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The ray theory of ship waves and the class 
of streamlined ships 

By JOSEPH B. KELLER 
Courant Institute of Mathematical Sciences, New York University, 

251 Mercer Street, NY 10012 

A new theory is given for calculating the wave pattern and wave resistance of a ship 
moving at  low Froude number F .  It applies to ships of any width, either full-bodied 
or slender. In  this theory, the waves travel along rays which start at  source points, 
such as the bow and stern, on the water-line. They propagate with the speed of waves 
in deep water, but are also advected by the double body flow. This is the flow about 
the ship and its image in the undisturbed free surface. The phase of a wave at  any 
point on a ray is the optical length of the ray from the source to that point. The ampli- 
tude is determined by an excitation coefficient, which determines its initial value, 
and by an integral along the ray. The total wave height at  any point is the sum of the 
heights on all the rays through the point. The theory is incomplete because the 
excitation coefficients are known only for thin ships. As an illustration, the theory is 
applied to the thin ship case, and the results then agree with Michell’s thin ship 
solution evaluated for F small. 

A new class of ships, which we call streamlined ships, is introduced next. The usual 
linear free surface condition applies to the waves they produce. The ray theory is 
developed for these waves at low F ,  and it involves straight rays produced at  all 
points on the rear half of the water-line. In  addition, as an alternative to the ray 
theory, another method is presented for obtaining the waves at low F. It involves a 
Schrodinger-like equation in which distance along the ship’s centre-line is the time- 
like co-ordinate. 

1. Introduction 
The ‘ray theory of ship waves’ is a new asymptotic theory, valid for low Froude 

number F = U(gL)-Q. Here U and L are the speed and length of the ship, and g is 
the acceleration due to gravity. The theory applies to ships of any width, full-bodied 
as well as slender. Thus it complements Michell’s theory, which applies to thin ships 
at  any Froude number. The ray theory was described in June 1974 at the Tenth 
Symposium on Naval Hydrodynamics (Keller 1974). 

In the next section we shall describe the ray theory in physical terms. Then in $ 3  
we shall present the equations from which the rays, phase, and amplitude can be 
calculated. In  $ 4  we shall apply these equations to a thin ship and obtain results 
which agree with Michell’s theory for that case. In  $ 4  5-10 we shall derive the equations 
of $ 3  formally from the equations of hydrodynamics. 

This ray theory is patterned after the author’s geometrical theory of diffraction 
(Keller 1953, 1962). That theory has been useful in electromagnetic theory, in acous- 
tics, and in the study of surface gravity waves (Shen, Meyer & Keller 1968). It yields 
results which are very accurate for short waves, but the accuracy decreases as the 
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wavelength h increases until i t  is 5 % or so for wavelengths as large as nL, where L 
is the dimension of an obstacle. This suggests that the present theory also may be 
useful for h < nL, which corresponds to 2nF2 6 n, or equivalently to F < 2-4 M 0.7.  

After developing the ray theory for ships of any shape, we shall introduce in 9 11 
a particular class of ships which we call streamlined ships. These are ships for which 
a line parallel to the centre-line is nearly tangent to the hull a t  every point. This is 
the most inclusive class of ships for which it is valid to linearize the free surface 
boundary condition about that for a flat surface a t  any fixed Froude number, as in 
Michell’s theory. However, the tangential flow condition holds on the actual hull, 
rather than on the midplane. The resulting linear boundary value problem has been 
studied by Brard (1972) and Noblesse (1978), but they did not consider the class of 
ships for which it is valid. 

The ray theory and its derivation are both much simpler for streamlined ships than 
for general ships. The rays are straight lines and they are produced a t  all points on 
the rear half of the water-line, and not just at the special source points which play a 
role in the general case. By using these rays we can construct the wave pattern for 
any streamlined ship. One interesting result is that the wave pattern behind the 
ship on each side is determined by the hull shape on the opposite side ! This is because 
the rays cross the centre-line behind the ship. 

In  addition to the ray theory for streamlined ships, we shall present another method 
for calculating the wave motion produced by such ships at low F .  It involves a 
Schrodinger-like equation in which distance along the centre-line of the ship is the 
time-like co-ordinate. The advantage of this ’parabolic’ equation is that the wave 
motion can be calculated by starting a t  the bow and marching toward the stern, 
finding the motion in the transverse plane a t  each step. The equation can also be 
approximated by a similar equation just on the free surface. These equations can be 
converted into Volterra integral equations on the hull and water-line, respectively, 
and the integral equations can also be solved by marching. 

Finally we shall compare our results with those of other authors who have dealt 
with wavemaking at  low Froude number. We shall see that Baba (1976) and Maruo 
(1977) unwittingly made approximations which restrict their results to Streamlined 
ships at  low Froude number. We shall also see that their results can be interpreted in 
terms of rays, as in our theory. However some of their rays travel through the hull ! 
These rays, which are not present in our theory, are spurious. They show that some 
incorrect assumptions were made in deriving the integral representation from which 
the results were calculated. Noblesse (1978) also obtained this incorrect integral 
representation. 

2. Physical description of the ray theory 
The ray theory is based upon the fact that a ship moving at  speed U produces 

waves of wavelength h = 27i-U2/g. The ratio of this wavelength to the ship length L 
is h / L  = 2nU2/gL  = 2nF2. Thus for small F the waves are short compared to L. 
Being short they must propagate along rays, and the rays must originate at  the ship. 
Because short waves penetrate only a short distance beneath the surface, they must 
be produced at  the water-line of the ship. But the waves produced by smooth portions 
of the water-line cancel one another by interference. Therefore, the rays are produced 
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only a t  the bow, stern and other corners of the water-line, all of which we call sources. 
Thus the wave pattern consists of short waves which travel outward along rays from 
the sources. 

To determine the rays, we note that aside from the wave motion, there is a non- 
uniform flow around the ship. When F is small, this flow is practically the ‘double 
body’ flow, which is the potential flow about the ship and its image in the undisturbed 
free surface. As the waves propagate, they are advected or carried by this flow. Thus 
their motion can be found by suitably combining the flow velocity with the propaga- 
tion velocity of surface waves in water a t  rest. 

The phase s of a wave a t  a point x is the optical length or travel time along a ray 
from its source to x..The amplitude b involves an integral along the ray which expresses 
the energy balance in a narrow tube of rays. The ‘initial value’ of b is determined by 
an excitation coefficient E ,  which depends upon the shape of the hull near the source. 
The major unsolved problem of the present theory is the determination of E for 
non-thin ships. 

In  terms of the phase s and the amplitude b, the wave height on each ray is just 
the real part of LF3b exp (iF-2s). Then the total wave height at a point is the sum 
of these heights on all the rays through the point. Thus the wave height pattern 
exhibits interference in regions covered by two or more families of rays, and it is 
zero where there are no rays. The resistance can be found, as usual, by calculating 
the rate a t  which the waves carry energy to infinity. 

We shall next present the equations of this theory. 

3. Summary of the ray theory 
Let x = (x, y ) ,  z, t be dimensionless co-ordinates with L the unit of length and U-’L 

the unit of time. The z axis is vertical while x is horizontal and the undisturbed water 
level is a t  z = 0. We denote the disturbed water surface by z = F2y(x, t)  and write y 
as the sum of two parts, 

bi(x, t )  F exp {iF-2si(x, t )  + yo(x, t)  [si + V$. V S ~ ] ~ }  + O(F2).  (3.1) 

For a real function like y, the real part of the complex expression is always to be used. 
The first part yo is calculated from the double body potential +(x ,z , t ) .  As we shall 
show later, + is the solution of (6.1)-(6.4)) yo is given by (6.5), and yo does not represent 
waves. The second part is a sum of terms, one for each set of waves, or equivalently 
one for each ray through x at time t .  I n  (3.1) si(x,t) and bi(x,t) are the phase and 
amplitude on the j t h  such ray. 

The rays are curves in the plane z = 0. Two families of them emanate from each 
source. One family is associated with the transverse wavefronts and the other with 
the longitudinal wavefronts (see figure 1) .  If a ray emanates from a source in a direc- 
tion tangent to the water-line, it travels along the water-line. When it reaches another 
corner of the water-line, it  produces diffracted rays. The diffracted rays also contribute 
to  the wave pattern, but the amplitudes on them are of a smaller order in F than the 
amplitudes on the direct rays. Therefore, they do not contribute to the leading-order 
part of the wave pattern, so they can be omitted in calculating that part. Then typically 
just four rays, two from the bow and two from the stern, pass through each point in 
the wake. 

y(x, t )  = yo(x, t)  + 
i 

16-2 
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FIGURE 1.  A sketch of some rays produced at the bow and stern of a ship moving 
to the left with constant velocity. 

To define the rays, we begin with the equation for any phase function s, which is 

(VS)2 = (St + vq5. Vs)4. (3.2) 

This equation will be derived later as equation (8.2).  In  it 4 = #(x, 0, t )  is the double 
body potential evaluated a t  z = 0. Equation (3.2) is just the dispersion equation for 
surface waves in deep water moving with the velocity V 4 .  To show this we introduce 
the wave vector k = Vs and the frequency w = -st. The dispersion equation states 
that the magnitude of k is equal to the square of the Doppler-shifted frequency 
w - k .  Vq5. Squaring both sides of this relation yields k2 = (w  - k .  V4)4, which is just 
(3.2). Since (3.2) involves only even powers of s, when s is a solution then so is -s. 

The rays are the characteristic curves of (3.2). We shall write them in terms of a 
parameter (T as x ( a ) ,  $(a), and we must include k(a) ,  &(a) and s(cr). We also introduce f ,  
defined in (3.3), and write (3.2) in the form f = 0: 
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Then the rays are solutions of the following set of ordinary differential equations, in 
which a dot denotes d/da (Courant & Hilbert 1962) : 

The first six equations determine the rays and the last equation yields 5. 
In the special case of a ship moving with constant velocity, i t  is convenient to 

choose the origin of co-ordinates to be fixed in the ship with the x axis along the ship’s 
path and with the ship velocity directed toward decreasing x. If the wave pattern 
is independent oft ,  we can omit the equations for t and w from (3.4) and set w = 0. 
Then we can write (3.4) explicitly as 

X = 4 ( k .  V#)3 V# - 2k, 

k = 4(k .V$)3 (k .V)V# ,  (3.6) 

(3.5) 

8 = 2k2. (3.7) 

To solve these equations we need initial values. The initial value of x is the position 
of the source. The initial value of k can be found by writing k = (kl, k,) and choosing 
k, arbitrarily. Then (3.3) determines k,. This equation is generally a quartic, so it 
generally has four solutions. But not all the solutions are admissible. Only those 
which are outgoing, i.e. which carry energy away from the source, can be used in 
constructing the wave pattern. 

Wave energy propagates with the speed and direction given by the group velocity 
cg = v k w .  Therefore, only those rays for which cg when evahated near the source 
points away from it can be used. To evaluate cg we solve (3.3) for o and find 

w = ld++.V#(x,O).  

cg = :k-*k + V$(X, 0). 
Differentiating yields 

Thus, only those rays are to be used for which this expression, evaluated near the 
source, points away from it. 

The initial value of s can be chosen as s = 0 at  the source. Then by integrating (3.7) 
along each outgoing ray we obtain 

r m  
S ( V )  = 2 J k2((+’)dd. 

0 
(3.9) 

The amplitude b at x(a), t ( a )  is given by 

b = - i(s ,  + V$ . VS) u(T).  (3.10) 

The function a(a) ,  expressed by (10.6), involves E ,  the excitation coefficient of the 
source. The wave resistance R can be calculated by expressing the rate at  which energy 
is carried away from the ship in terms of the preceding quantities, as in Keller & 
Ahluwalia ( 1976). 

To apply the theory to the case of a constant velocity ship we must proceed as 
follows. 

(a )  Find the double body potential $(x, z )  and evaluate it at  z = 0. 
( b )  Evaluate yo(x)  = - i(V$),. 
(c) Solve (3.5) and (3.6) for the outgoing rays x(a), k(a) from each source, using 

the above value of #(x). 
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(d )  Evaluate s(c) given by (3.9), using the solution for k(c). 
(e) Evaluate b given by (3.10). To do so a correction to #, called #Jl, is needed in 

(10.6). 
(f)  Use the above results in (3.1) to get r(x,t), and in (54) of Keller & Ahluwalia 

(1976) to get R. 
We must now consider whether there are rays emanating from smooth portions of 

the water-line, in addition to the rays from the source points considered above. If 
there were, they would yield a solution s of (3.2) with s = 0 on the water-line. For 
this solution st and the tangential component of Vs  are zero on the water-line, so 
(3.2) determines the normal component of Vs there. Since V# is tangential to the 
water-line, (3.2) shows that Vs = 0. Thus the initial value of k is zero. In  the case of 
a constant velocity ship it follows from (3.5) and (3.6) that there are no rays which 
leave the water-line with this initial value of k. Thus no rays are produced a t  smooth 
portions of the water-line, as was stated in the preceding section. 

4. Application of the ray theory to a thin ship 
We shall now illustrate the use of the preceding theory by applying it to find the 

time independent wave pattern of a thin ship moving with constant velocity in the 
-x direction. We assume that the bow intersects the undisturbed free surface at  

fixed with respect to the ship. We shall first neglect the ship's beam, so that the ship 
lies in the x, z plane. Then it does not disturb the water a t  all, so the double body flow 
is just the unperturbed uniform flow with the potential #(x, y, z )  = x. The correspond- 
ing free surface is the undisturbed surface, for which yo(", y) = 0. It can be verified 
easily that  # satisfies (6.1)-(6.4) and that r0 is given by (6.5) with #* = 0. This com- 
pletes steps (a)  and ( b )  of the procedure outlined above. 

When we use #(x, y, 0 )  = x in (3.6) it becomes k = 0. Thus k is constant on each 
ray. Next (3.5) becomes 

In  view of the constancy of k, and k, along a ray, it follows from (4.1) that each ray is 
a straight line. To find k, we set w = 0 and #J = x in the dispersion equation (3.3), 
which becomes 

This has the two solutions 

Then the solution of (4.1) for a ray starting a t  the stern x = y = 0 a t  u = 0 is 

x =  -1 , y =  z = 0 and the stern intersects it a t  x = y = z = 0 in a co-ordinate system 

X = 4k;- Zk,, y = - Zk,. (4.1) 

k; -I- kg = k:. (4.2) 

k, = (k: - kf)*. (4.3) 

X ( G )  = (4k:-2k1)~ ,  y(c) = TZ(k: -k : )*g .  (4.4) 

The corresponding solution for a ray starting a t  the bow is also given by (4.4) with 
x+ 1 in place of x. 

To analyse the rays we introduce the polar co-ordinates r,  a. Then from (4.3) we 
find that the slope angle of the ray with parameter k, is given by 

(4.5) 

From (4.5) we 00e that tan a is a function of k: which is real for kf 2 1. With the plus 
sign, it increases from t a n a  = 0 a t  kf = 1 to the maximum value tana* = 2-$ a t  

t a n a  = T (kt- 1)*/(2k!- 1). 
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(k:)2 = Q ,  and then decreases to tan a = 0 at k! = + co. Thus, there are two values of 
k: corresponding to each value of tan a in the range 0 < tan a < tan a*. This means 
that there are two rays from the stern in each direction within this range. By choosing 
the minus sign in (4.5), we find that there are also two rays in each direction in the 
range - tans" < t a n a  c 0. 

The condition - tana" c t a n a  < tana" is satisfied by a in either the range 
-a* < a c a* or the range n-a* < a < n+ a*. From (4.4) we see that when k; > 1 
then x(a) > 0 if k, and c have the same sign while x(a) < 0 if k, and a have opposite 
signs. Thus, in the first case the ray will lie in the downstream sector -a* < a < a*, 
while in the second case it will lie in the other range. Only the rays in the downstream 
sector -a* < a < a* are outgoing, so we just include them and choose k, > 0 and 
u > 0. This completes step (c ) .  

Next, we use (3.9) for s, noting that k is constant along a ray, and (4.2) which gives 
k2 = k:. Thus 

S(V) = 2 k ; l ~ .  (4.6) 

Equations (4.4) and (4.6) represent s(x) parametrically in terms of the parameters 
k ,  and a. This completes step ( d )  of the programme. The two values of k, corresponding 
to each possible ray direction a yield two different values for s. They are exactly the 
phases of the transverse and longitudinal waves of the Kelvin ship wave pattern with 
its origin at the bow or the stern. 

To compute the amplitude b given by (3. lo), we note that st = 0 and V$ . Vs = s, = k, 
in the present case. Thus b = -ik,a(a), with a(a)  given by (9.9). To use (9.9) we 
must first find q5,, the solution of (6.7)-(6.10). When we use q5 = x and 7, = 0 in (6.10)) 
we find that the problem for q5, is homogeneous. Therefore its solution is q5, = 0. 
Next (7.20) shows that D = a,, so Ds = s, = k,, and then (9.4) yields y = 0. As a 
consequence, the exponent in (9.9) becomes just the integral of - A s +  2(D2s) (Ds)~.  
In appendix B it is shown that 

i 

- AS + 2(D2s) ( D s ) ~  = - $. (4.7) 

Thus, the integral can be evaluated, a ( a )  can be found, and then b is given by 

b = -ik,a(a) = - ik la(g0)  (c,/g)i. (4.8) 

To find a(a,) in (4.8) we use (10.5) with f (a,) = at. In  the present case V$ = ( l , O ) ,  
which is regular a t  the source, so we set A = 1 in (10.5). Therefore, a(a,) at = E(a) ,  
where E is written as a function of the ray angle a. Then (4.8) becomes 

(4.9) b = - ik,E(a) a-4. 

This completes step ( e ) ,  except that E(a) is still unknown. 

(3.1) yields 
Finally, we use the results (4.6) for s and (4.9) for b in (3.1) to get ~ ( x ) .  Since 7, = 0,  

F2r(x) = C -ik,F3E(a) a-iexp (2iF-2k':cr) + O(F4). (4.1.0) 

There are a t  most four rays through x, two from the bow and two from the stern, 
but there may be just two or none, depending upon the location of x. The values of 
k,  and a depend upon the point x, and whether the ray comes from bow or stern. 
These values are determined in terms of x by (4.4) for rays from the stern, and by 
(4.4) with x+ 1 in place of x for rays from the bow. There are also four coefficients 

i 
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E(a) ,  one for each of the rays. This completes the first part of step (f), the determina- 
tion of y, with the E(a)  still unknown. 

Let us now compare our result (4.10) with the result obtained from the Michell 
theory for F small. That result, obtained by Keller & Ahluwalia (1976), is given by 
their equation (39) which is 

(4.11) 

Here (r,, a,) are the polar co-ordinates of x with origin a t  the bow for q = 1 and a t  the 
stern for q = 2. The sum over j is over the two rays in the direction a,, and the sum 
over q is over the two sources. We note that (4.11) holds for la,] < a*, where four rays 
pass through each point. 

I n  (4.1 1) k = g / U 2  = L-IF-2 and E,, = k-*E,, = L$F3Ejq, where Eiq is dimension- 
less. Furthermore, it follows from the definitions of k,, u and of $ in (4.11) that for 
either bow or stern 

(4.12) 

When these expressions are used in (4.11), it becomes 

Comparison shows that (4.10) and (4.13) depend in exactly the same way on F and u. 
They become identical if we define E(a) by 

E(a)  = - 2 4  C O S ~  @$(a) @k[O,(a), a] E ~ , ( c I ) .  (4.14) 

All the functions in (4.14) are defined in Keller & Ahluwalia (1976), equations (22), (23) 
and (40). 

We have now found exact agreement between the wave height given by the present 
theory, when specialized to a thin ship, and that given by the Michell theory when 
specialized to  small F .  This agreement implies that R given by the present theory 
also agrees exactly with the result of the Michell theory for small F ,  so we shall not 
calculate R. The comparison has also enabled us to determine E for a thin ship. It is 
given by (4.14). 

We shall now show how the preceding theory can be derived from the hydrodynamic 
boundary value problem which is formulated in 3 5. 

5. Exact formulation of the problem of flow past a ship 
We wish to find the velocity potential @'(x' ,z ' , t ' )  and the free upper surface 

z' = y'(x', t ' )  of an inviscid incompressible fluid, due to the motion of a ship. Here 
X' = (x', y') and z' are horizontal and vertical co-ordinates, respectively, and t' is 
time. Let the lower boundary of the fluid be the rigid surface z' = -h'(x') and let 
B(t') denote the surface of the ship at time t' .  The normal component of velocity of 
the ship a t  the point x', z',  t' on B(t') is denoted by w'(x', z',  t ' ) .  We now introduce the 
corresponding dimensionless quantities @, 7, etc. defined by 

0' = ULO,  7' = F2L7, (x',z', h') = L ( x , z , ~ ) ,  t' = U-lLt, V' = UW. (5.1) 
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In terms of these dimensionless quantities, the relevant equations of hydrodynamics 
and boundary conditions are 

AQ, = 0, (5.2) 

a@/& = v on W ) ,  (5.3) 

a@/an = 0, z = - h ( x ) ,  (5.4) 

aZ = F2(qt + VQ,. Vq), x = F27(x, t ) ,  (5.5) 

7 = -@,t-4(V@)2, 2 = F2q(X,t). (5.6) 

- h(x)  6 z 6 F 2 ~ ( x ,  t ) ,  

In addition Q, and 11 must satisfy suitable conditions a t  infinity and a t  some initial 
time. 

6. The double body potential and the F2 correction 
The solution Q,, ‘1 of (5.2)-(5.6) depends upon F. To find this solution for F small, 

we first set F = 0 in (5.2)-(5.6) and write $, T~ for the solution at F = 0. I n  this way 
we get 

A$ = 0, -h (x )  < z < 0, (6.1) 

a$/an = v on B(t) ,  (6.2) 

a$/an = 0, 2 = --h(X)) (6.3) 

$2 = 0, 

710 = - $t-- i(V$)Z, 

z = 0,  

2 = 0. 

The solution $ of (6.1)-(6.4) is called the double body potential because it can be 
found by reflecting B(t)  and the flow region in the plane z = 0. I n  this extended 
region, the flow is that past B(t)  and its image, which constitute the ‘double body’. 
Once $ is found qo is given by (6.5). 

For F2 small but not zero, we write 

Q, = $+F2$1+ ..., 7 = ~ o + F 2 ~ , + . . .  . (6.6) 

A41 = 0, -h (x )  < z < 0, (6.7) 

a#,/an = 0 on B(t) ,  (6.8) 

a$,/an = 0, z = -h (x ) ,  (6.9) 

We substitute (6.6) into (5.2)-(5.6) and equate to zero the coefficients of F2 to obtain 

$1, = 71ot+V~.V710-$2,710, = 0, (6.10) 

711 = -$lt--v$*v$l~ z = 0. (6.11) 

Once (6.7)-(6.10) are solved for q51) then (6.11) yields vl.  
Neither $, v0 nor r$l, q1 exhibits wave motion, and the continuation of the power 

series expansions (6.6) will not do so either. This is related to the fact that the solution 
is not analytic in F a t  F = 0, but has an essential singularity there. Therefore Q, and 
7 cannot be power series, but must contain non-analytic terms. I n  appendix A some 
simple examples are given to indicate how such terms arise. 
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7. Wave motion 
To describe the wave motion, we shall modify (6.6) and write 

= $ + F2#, + F3 exp [iF-2~] (a  + F2a,) + . . . , (7.1) 

(7.2) 7 = 7, + F2ql + F exp [ iF-2s(~,  F 2 ~ ,  t ) ]  (b  + F2b,) + . . . . 
The complex functions s, a, a,, b and b, are to be found, while the real functions 4, T,, 
$, and T~ satisfy the equations (6.1)-(6.11), and will be considered to be known. It is 
understood that 0 and 7 are given by the real parts of the right sides of (7.1) and 
(7.2).  These equations do not hold in a boundary layer near the ship. 

In  general cf, and 7 contain a sum of wave terms with different phases and ampli- 
tudes, corresponding to the different waves passing through x a t  time t .  But these 
waves satisfy linear equations, to the order we shall determine them, as is shown below. 
Therefore it suffices to write just one wave term in order to derive the equations for it. 
Of course in calculating @ and 7 all the waves must be included. 

Some reasons for assuming the particular form given above for the wave motion 
are the following. First of all, the dimensionless wavenumber k associated with 
the Froude number F is k = F-2. Since we are considering F to be small, k is large. 
Now linear wave motions with k large are always proportional to eiks, which 
accounts for this factor in (7.1). The corresponding factor in (7.2) is evaluated on 
the free surface z = F27, as is to be expected from (5.6). The factor P multiply- 
ing the exponential in (7.2) results from the fact that, as we shall see, b, behaves like 
r-*near the source, where r is distance from the source. This singular behaviour 
should be independent of L, so dimensional analysis dictates that 7 must behave 
like (kr)-*. Since k-i  = F ,  this explains the factor F in (7.2). The factor F3 in (7.1) 
is needed so that in (5.6) derivatives of the wave term in (7.1) can balance the 
term proportional to F in 7. However, the subsequent analysis also holds if the wave 
terms in (7.1) and (7.2) have the factors F3+5 and Flit respectively, for any positive 
number 5. 

We must now substitute (7.1) and (7.2) into (5.2)-(5.6) and equate to zero the 
coefficients of the wave factor exp ( i F - 2 ~ ) .  Because this calculation is a bit compli- 
cated, we shall break it up into the following three steps, which are equivalent to 
direct substitution. 

(1) We write @ = $ + q5' + . . . , l;r = T j  + q' + . . . , and linearize the equations with re- 
spect to $' and f .  

(2) We substitute $' = F3exp (iF-2s) A ,  1' = Fexp [ i F - 2 s ( ~ ,  F2ij, t ) ]  B into the 
linear equations. 

(3) We set $ = q5 + F2$, + . .. ,T = 7, + F2q, + ..., A = a+ F2a,+ .. . , B = b + F2bl+ .. . 
in the resulting equations and equate coefficients of each power of F in each equa- 
tion. 

- 

The first step yields A$' = 0, - h < z < F2V, (7.3) 

a$'/an = 0 on B(t), (7.4) 

a#'/an = 0, z = -h ,  (7.5) 

(7.6) 

(7.7) 

$; + F~Y'$~,, = F 2 ( ~ d  + V$.  Vy' + V$' . Vij) + F4fV i j .  O$,, z = F2ij, 

y' = - $' - F2- $tzf  - V$ . V$' - F2r'V$. VqZ, z = F""ij. 
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As the second step, we substitute 

and 
#' = F3exp ( i F - 2 ~ )  A 

7' = F exp [iP2s(x, F27, t ) ]  B 

into (7.3), (7.4), (7.6) and (7.7) to get 

- (VS)~A + iF2(2Vs. V A  + AAs) + F4AA = 0, - h < z < F27, 

i(ag/an) A + F2(aA/an) = 0, 

(7.8) 

(7.9) 

-is, A + i(s, + $,s, + $,s,) B + F2[DB c is,B& + iAVij. V s  - A ,  - B&,] 
+ F4[BV?f. V;bz + VTj. V A ]  = 0, z = F2?, (7.10) 

(7.11) B+ ~ ( D s )  A + F2[BD$,+DA] = 0, z = F27. 

Here we have introduced D, defined by 

B = a,+v$.v. (7.12) 
We shall consider (7.5) later. 

Now as the third step, we substitute A = a-t-F2al+ ..., etc. into (7.8)-(7.11) and 
equate to zero the coefficients of the two lowest powers of F2. However in (7.9) we 
need only the coefficient of the lowest power of P2. In  treating (7.10) and (7.11) we 
must also expand the functions of z ,  which are evaluated at  z = F2V, about z = 0. 
This step yields the following equations: 

( V S ) 2  = 0, - h  < z < 0; (7.13) 

~ V S . V U + U A S  = 0, - h  < z < 0; (7.14) 

(as lan)  a = 0 on B(t); (7.15) 

- s ,a+(Ds)b  = 0, z = 0; (7.16) 

--,a,+ (Ds)b ,  = - ( # ~ x ~ x + # ~ z ~ , ) b + ~ [ D ~ + ~ ~ , ~ ~ ~ ~ + ~ ~ V ~ ~ . V ~ - ~ , - ~ # ~ ~ l  

+yoa,[s,a- (St+#Zs,+#,Sv)bl, z = 0; (7.17) 

b + i ( D s ) a  = 0, z = 0; (7.18) 

b,+i(Ds)al = - i ( V # l . V ~ ) ~ - b D ~ , - D ~ - i y o a , ( a D s ) ,  z = 0. (7.19) 

D = at+v#.v. (7.20) 

On z = 0, (6.4) shows that #, = 0, and then D = a,+ #,a,+ #vav. We have used this 
fact above, except where D is differentiated. In  the following sections we shall deduce 
the consequences of the equations (7.13)-(7.19). 

Here 

8. The dispersion equation 
Equations (7.16) and (7.18) are two homogeneous linear equations for a and b, 

which have a non-trivial solution only if the determinant of the coefficient matrix 
vanishes. The vanishing of this determinant yields 

s, = - i(st + V # .  v s y ,  z = 0. (8.1) 
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Now we use (8.1) to eliminate s, from (7.13) on z = 0. In  this way we obtain 

(Si + s$ = (St + $,s, + q5usy)2, = 0. (8.2) 

This is a first-order partial differential equation for s(x, 0, t ) ,  which we call the ‘ dis- 
persion equation’. 

This dispersion equation is that for an infinitely deep fluid because it was derived 
for short waves. Only the velocity Vq5 at z = 0 enters it because the wave motion 
decays exponentially with depth. This is evident from (8.1), which shows that s, is 
negative imaginary a t  z = 0. Then the factor exp (iF-2s) decays rapidly with increasing 
distance below the surface. Another consequence of this exponential decay is that 
aq5’/an is exponentially small a t  z = - h, so (7.5) is satisfied asymptotically. That is 
why we omitted it above. 

In Q 1 we showed how to solve (8.2) for the phase function s on z = 0, by the method 
of characteristics. The solution can be extended to z < 0 by using its values on z = 0 
as initial conditions for (7.13). That equation can also be solved by rays, which are 
complex straight lines, but we shall not need the solution. However, we do need s 
at z = F2q, since that is where i t  is evaluated in (7.2). To find it  we shall use its Taylor 
expansion to two terms: 

(8-3) s(x, ~ 2 7 ,  t )  = S(X, 0, t )  + F S ~ ( X ,  t )  S,(X, 0, t )  + o(a4). 

s(x, ~ 2 7 ,  t )  = S(X, 0, t )  --i~q,,(x,  t )  [st + vq5. v q +  o(~4) .  

Now s, is given by (8.1) and 7 is given by (7.2). Therefore (8.3) becomes 

(8.4) 

We now use (8.4) in (7.2) and retain only the leading terms to obtain 

~ ( x ,  t )  = qo(x, t )  + Fb(x,  t )  exp {iF-2s(x, 0, t )  + qo(x, t )  [st + Vq5. VS]~} + . . . . 

boundary condition for s on B(t). Then we find, from (7.15), if a #= 0 on B(t), that 

(8.5) 

If we wish to construct the waves on surface diffracted rays, we must consider the 

as/& = 0 on B(t). (8.6) 

We can rewrite this as n.Vs = 0 and then on z = 0 we can use (8.1) to eliminate s,. 
In  this way we get 

nxs,+n,~u-in,(st+#,sx+#us,)2 = 0 on W(t) .  (8.7) 

Here (nz, nu, n,) are the components of the normal to B(t), and W(t )  is the water-line, 
which is the curve of intersection of B(t) and the plane z = 0. In  (8.7) only the values 
of B on the surface z = 0 are involved. 

9. The transport equation 
From (7.18) we have 

b = -i(st+P$.Vs)a, z = 0. 

This determines b in terms of a on z = 0. To find a on z = 0, we observe that (7.17) 
and (7.19) are a pair of inhomogeneous linear equations for a, and b, with the same 
coefficient matrix as that in (7.16) and (7.18). Since that matrix is singular, the right 
sides of (7.17) and (7.19) must satisfy a solvability condition in order that these 
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equations have a solution. This condition, obtained by subtracting Ds times (7.19) 
from (7.17) and simplifying, is 

(2V41. V S  - 41,8,) b - iDb + 8, bDqo 
+ ~ V S .  Vqo + ia, + ib$,, - b(Ds)  (D4,) 
-(Ds)(Du)+~~~(~Ds+VS.V~,)-S,,~~U = 0, z = 0 .  (9.2)  

- iDb - (Ds) (Du) + i ~ ,  + yb + ( V S .  Vqo - T~s,,) u = 0,  (9 .3 )  

where y is the coefficient of b in (9 .2 ) .  Since cj, = 0 on z = 0, as (6 .4 )  shows, y can be 
simplified to the form 

This equation is of the form 

y = 2 t 7 4 1 . V ~ - 4 1 , ~ , + ~ , D ~ 0 + i c j , + 2 ~ o D ~ + ~ o ~ , 4 ~ ~ ,  z = 0. (9 .4)  

Furthermore b can be eliminated from (9.3) by means of ( 9 . l ) ,  and a, can be eliminated 
by using (7.14), which yields 

a,=: -- ’ ( V , S . V , U + U A S ) .  
2% 

(9.5) 

Here V ,  = (az, aV). Then since S, = - ~ ( D s ) ,  according to (8.1), we can write (9 .3 )  as 
follows : 

- 2 ( D s )  (Du)+ ( D 8 ) - 2 V z ~ . V e ~ o +  [ ~ ( D ~ S ) - ~ A S - D ~ S - ~ ~ D S + V S . V ~ ~ - ~ ~ S , , ] U  = 0, 

z = 0. (9.6)  

We can write (9.6) as an ordinary differential equation for ao(a) by introducing the 
directional derivative 

Then (9 .6 )  becomes 
d / d r  = - ~ ( D s ) ~  D + 2V28. V , ,  z = 0. (9 .7)  

da /da+  ~ ( D s ) ,  [ ~ ( D s ) - ~  AS - 0% - i r D ~  + V S .  Vllo - T ~ S ~ , ]  u = 0, z = 0. (9 .8)  

This equation is called the transport equation for a. From equation (3 .4 )  it follows 
that the derivative (9 .7 )  is along a characteristic curve of the dispersion equation 
(8.2). Since we call such a curve a ‘ray’, (9 .8 )  is an equation for a along a ray. Its 
solution is 

a ( r )  = u(ro)exp { - 2 ( D s ) ~  [ S ( D S ) - ~ A S  - 0,s - i y D e  

+ V s . V ~ o - q o S ~ ~ ] d ~ ’  , Z = 0.  (9.9)  I 
The result (9 .9)  for a ( r )  along a ray can be used in (9 .1 )  to determine the wave 

amplitude b. This completes the determination of 7, which is given by (8.5). However 
the initial value a(uo) in (9 .9 )  has not yet been determined, so we shall now consider 
how to find it. 

10. Excitation coefficients 
The initial value a(ro )  must be determined by considering wave production at  the 

source uo = 0. The source is a focal point of rays and a stagnation point of the flow, 
so we must expect a(ro)  to be singular there. For thin ships (4 .9 )  shows that u(a) is 
proportional to a”, and the corresponding result for more general ships can be 
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obtained from (9.9). Let us assume that a(a)  becomes infinite like l/f (a) as a tends 
to zero, where f (a) is a function which vanishes a t  a = 0. The function f (a) can be 
calculated from (9.9)) but we shall not calculate it here. 

We now rewrite (9.9) with the factor f (ao) [f (aO)]-l on the right side, and then we 
take the limit of both sides as a. tends to zero. The left side a(a)  is independent of 
ao, while the right side can be written as a product of two limits as follows: 

1 
a(a)  = [limf(ao)a(ao)] 

\ - ,  
UrJ-tO 

x [ ~ ( D s ) - ~ A ~ - D ~ ~ - ~ ~ D s + V ~ . V ~ ~ - ~ ~ S ~ ~ ]  da‘ . (10.1) IJ 
Since we have assumed that a(ao) becomes infinite like i/f(ao), the first limit in 
(10.1) exists. Then because the left side is independent of go) the second limit also 
exists. I n  fact f (a) can be characterized by the requirement that this second limit 
exist. 

I n  order to use (lO.l), we must determine the first limit in it. Since a. = 0 denotes 
the source point, where the waves are produced, this limit must be determined by 
the potential q5 and the shape of the hull near the source, and by the angle a a t  which 
the ray leaves the source. Near the source the hull has a tangent cone with its apex 
a t  the source. This tangent cone and the plane z = 0 bound a conical domain I’ within 
which q5 is defined near the source. To find the behaviour of q5 there we write 

q5(r) w) = Ara$(w) + . . . . (10.2) 

Here r snd w are polar co-ordinates with origin at the source, A is a constant, and p 
and @ are to be found. 

To find p and $ we first substitute (10.2) into Laplace’s equation (6.1) and obtain 

B$= -/3(p+1)$ in I?. (10.3) 

Here B is the angular part of the Laplacian. Next we insert (10.2) into the boundary 
condition (6.2) on the hull, and expand it for r small, and into the boundary condition 
(6.4) on z = 0. These two conditions can be written together as a single condition on 

a@/& = 0 on ar. (10.4) ar, the boundary of F: 

The problem (10.3)) (10.4) determines a sequence of eigenvalues /3 and corresponding 
normalized eigenfunctions 9. The smallest eigenvalue satisfies the condition /3 > 1 
because I? subtends a solid angle less than 2n. It is this eigenvalue and the associated 
eigenfunction which determine the leading term in (10.2). The corresponding expan- 
sion coefficient of 4 with respect to @@(a) is the constant A in (10.2). 

We now assume that the first limit in (10.1) is given in terms of this constant A by 

limf(uo) a(ao) = E(a)  A .  
ao+o 

(10.5) 

We shall call the function E(a)  the excitation coefficient of the source. We expect it 
to depend upon the angle a a t  which the ray leaves the source and upon the shape 
of the hull near the source. By using (10.5) in (10.1) we obtain finally 

+ VS. Vqo - ~ O S ~ ~ ]  da’ . (10.6) I 
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To determine E(a)  for a source on a particular hull, we must solve a special problem, 
which we call a canonical problem, of wave production by a special hull. That hull 
must have the same local geometry near the source as the hull under consideration, 
and the incident flow must be given by the first term on the right side of (10.2). Thus 
the cone tangent to the hull a t  the source must be the same in the canonical problem 
as in the actual problem, so the canonical hull could be this cone. This way of finding 
E ,  by considering a canonical problem, corresponds to using the method of matched 
asymptotic expansions. The canonical problem yields the first term in the inner 
expansion. 

We have now completed the derivation of the ray theory which was described in 
$3.  As we pointed out there, the problem of finding E is still unsolved in general. 
We have determined E(a)  for a thin ship in $4, but we have not found it for other 
cases. It can be found by experiment or by numerical solution of canonical problems. 

Even with E unknown, the theory describes the structure of the wave pattern in 
an intuitively clear way. The phase s can be determined readily by solving (3.2) for 
a ship of any shape. From it the wavefronts and the boundary of the wave pattern 
can be found. We shall illustrate how to do this in fj 12 for the special class of stream- 
lined ships which we sha.11 now introduce. 

11. Streamlined ships 
In  the preceding theory, the wave motion was found to satisfy equations obtained 

by linearizing the problem about 3 = 9 + F2$, and ;iri = qo + F2q,. Here q5 is the double 
body potential, qo is the corresponding surface elevation, while F2$, and F2q, are 
small corrections. We now ask whether there are cases in which it is valid to linearize 
instead about the state of rest $ = 0, ;iri = 0. The reason for asking this question is 
that the resulting equations will be simpler in such cases, as we shall see. The answer 
to the question is also quite simple. 

Linearization about a state of rest can be expected to be valid if and only if the 
ship produces a small perturbation of the state of rest. The size of the perturbation 
which a ship causes is determined by the component of the ship velocity normal to 
the hull. For ship motion along the x axis, the velocity normal to the hull is propor- 
tional to n,, the x component of the unit normal to the hull. Therefore the perturbation 
will be small if n, is small. We shall say that a ship is streamlined if n, is small every- 
where on the hull. Thus we conclude that linearization about a state of rest is valid 
for streamlined ships, and only for them. 

From this conclusion we must exclude the neighbourhood of any point on the hull 
at  which n, is not uniquely defined. At such a point, which may occur a t  the bow or 
stern, the flow may have a stagnation point, and there the perturbation is not small. 
Such exceptional points do not occur if the bow and stern are cusped. 

Streamlined ships include the previously studied cases of thin, flat, yacht-shaped 
and slender ships, as well as many others. However for the general streamlined ship 
the boundary condition must be satisfied on the actual hull, and not on the centre- 
plane, centre-line, or other simpIer surface as in the previously mentioned speciaI 
cases. This is necessary because the beam may be large compared to the wavelength 
h = 2nU2/g even though it must be small compared to the ship length. 

The linearized boundary value problem for the perturbation #', q' is given by 
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(7.3)-(7.7) with 7 = 0 and ?j = 0 in the free surface conditions (7.6) and (7.7)) and 
with v on the right side of (7.4). Thus for streamlined ships $’ and 7’ satisfy the following 
equations: 

A $ ’ = O ,  - h < z < O ;  (11.1)  

aq5’lan = v on B(t);  (11.2) 

a$‘/& = 0 on z = -h; (11.3) 

$1 = P2q; on z = 0;  (11.4) 

7’ = --$; on z = 0. (11.5) 

Brard (1972) and Noblesse (1978) have considered the problem ( 1  1.1)-( 11.5) for the 
steady state in water of infinite depth, but they did not discuss the conditions under 
which it is appropriate. 

Although the discussion given above shows that (1  1.1)-( 11.5) are valid for a stream- 
lined ship, we shall now indicate how these equations can be derived formally. To do 
so we write the equation of the hull in the original dimensional variables as 

y’/B = f ( x ’ /L , z ’ /B )  

for 0 < x‘ < L. Here B is a typical transverse dimension of the hull, such as the 
beam or draught, Lis the length, and f is a dimensionless function. Now we set B/L = E 

and (x, y ,  z )  = (x‘, y’ ,z’) /B.  Then we can rewrite the hull equation as y = ff(sx,z) 
for 0 < x < L/B = e-l. From this equation we find that n, = -cf1[l + fi +~”f]-*, 
where fl is the derivative off with respect to its first argument. If the ship is moving 
along the x axis with velocity U V ( t )  where V ( t )  is dimensionless, then the component 
of this velocity normal to the hull is BUV, where 

EV = n, ~ ( t )  = - sV(t)fl[i +ti” + szf3-4. (11.6) 

From ( 1  1.6) we see that EV is indeed small, of order B .  

We next replace L by B in (5.1) and in the definition of F .  Then we assume that 
the potential CD and the surface elevation 7 are of the forms @ = E$’ + 0 ( s 2 )  and 
7 = q ’ + O ( @ ) .  We insert these forms into (5.2)-(5.5) and consider the terms of 
lowest order in B .  They yield exactly ( 1  1.1)-( 11.5) with v in (1 1.2) denoting the coeffi- 
cient of E on the right side of (11.6). If a$’/an in (11.2) is written out in terms of 
components, the term B$; occurs, so i t  can be omitted. However the main point is 
that ( 1  1.2) holds on the actual hull. 

12. Ray theory for streamlined ships 
To derive the ray theory for a streamlined ship, we seek the asymptotic forms of 

6‘ and 7’ for F small. We expect the solution to consist of a non-wave-like part which 
is significant near the ship, and a wave-like part $;,& which is dominant far from the 
ship. We assume that the wave-like part is of the same form as the wave-like part in 
(7.1) and (7.2), but with s(x, P27, t )  replaced by ~ ( x ,  0, t )  in (7.2). Thus we write 

q5; = P3 exp [ i P - 2 ~ ]  (a + P2al) + . . . , 
7; = P exp [iF-2s(x, 0, t ) ]  (b  + F2b,) + . . . . 

(12.1) 

(12.2) 
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To determine this solution we shall use ( 1  1 . 1 )  and (1 1.3)-( 11.5). We shall not use 
the inhomogeneous equation (1  1.2) because that involves the non-wave-like part of 
the solution, which we shall not determine. As a consequence the power of F occurring 
as a factor in (12.1) is not determined, but will be determined by the appropriate 
excitation coefficient. 

The result of substituting (12.1) and (12.2) into the above equations i s  the same 
as setting q5 = = l;lo = 0 in (7.13), (7.14) and (7.16)-(7.19). Then (8.1)-(8.4) for s 
and (9.1)-(9.9) for a and b also hold with this same simplification. Furthermore for a 
constant velocity ship, in co-ordinates fixed in the ship, the ray equations become 
(3.5)-(3.7) with # = x. Thus the rays are just the straight lines determined in $4, 
and the results (4.1)-(4.8) hold for them. However in the present case there are other 
rays in addition to those from the bow and stern. One ray is produced at  each point on 
the rear portion of the water-line, as we shall now show. 

To find these rays we seek a solution for s with s = 0 on the water-line. Then k = Vs 
is normal to the water-line, (4.2) determines the magnitude of k, and (4.1) determines 
the ray direction. The rays are straight lines, with the angle a between a ray and the 
x axis given by (4.5). Since these are the rays in a uniform flow, they are the same as 
those in the Kelvin point ship problem. Then the analysis of those rays, as given for 
example by Whitham (1974, pp. 410-414), is applicable. It shows that k, a and the 
angle p between the directions of k and the ray are given by 

k = sec2+, t ana  = tan+(1+2tan2+)-l, tanp = -2tan+. (12.3) 

Here + is the acute angle between k and the negative x axis. The value of s at  a point 
a distance u - uo along the ray from the water-line is 

8 = (kcos,u)(a-r*). (12.4) 

In the present case, k is normal to the water-line so + is the acute angle between 
this normal and the negative x axis, which is just the direction of ship motion. Then 
tan+ > 0 and, from the last equation in (12.3), tanp < 0 and ,u > in. Therefore 
cosp < 0 and (12.4) yields s < 0. On the forward part of the water-line, a ray making 
an angle ,u > &r with the normal and directed toward the rear will penetrate the hull. 
Therefore no rays can be produced on the forward part of the water-line, except a t  the 
bow. However on the rear half of the water-line such rays do not penetrate the hull, 
80 they are produced there. Furthermore p + + < n, so these rays are directed toward 
the x axis, which they cross a t  some distance behind the stern. Thus the rays from each 
side of the rear part of the water-line, after crossing the x axis, determine the wave 
pattern on the opposite side of the ship. 

The phase on these rays is given by (12.4) and the amplitude by (4.8). Since neigh- 
bouring rays intersect at some point, we must measure u from this point in order that 
(4.8) hold. Then u0 denotes the dietance along a ray from this point to the water-line. 
Upon using these results in (12.2) we obtain 

l;lk = -iPsec$a(ro) ( r o / ~ ) ~ e x p [ i F - a s e c 2 ~ c o s , u ( r - r o ) ] +  ... . (12.5) 

Here we have used (12.3) for k and put k, = kcos+ = sec+. The amplitude factor 
a(uo) in (12.5) is so far undetermined. It could turn out to depend upon F, as we indi- 
cated above. We shall not pursue this analysis further in this paper. 
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13. ‘Parabolic’ equation for waves made by streamlined ships 
We shall now describe another method for solving (1 1 .l)-( 11.5) to find the waves 

produced by a streamlined ship. We assume that the ship is moving with constant 
speed - U along the x axis, and consider co-ordinates with origin fixed in the ship. 
Then (1  1.4) and (1 1,5), which yield 9: = - Fz& on z = 0 in the original co-ordinates, 
instead yield 

#; = -F2$’ zx on z = 0. (13.1) 

Thus we seek a solution rj’(x, y, z )  of (11.1)-(11.3) and (13.1) which tends to x a t  
infinity and has no waves ahead of the ship. In  these co-ordinates the normal com- 
ponent of the ship velocity is = 0 in (1  1.3). 

To solve these equations we set k = F-2 and write 

$’(x, 9, z )  = x + exp (ikx + kz)  u(x ,  y, z ) .  (13.2) 

Then (11 .1) )  (11.2) and (13.1) become the following equations for u: 

Ziku, + 2ku, + A u  = 0, z < 0, (13.3) 

au a(ix+z)  ax 
-+ku- = - - exp[ - i kx -k z ]  on B, 
an an an 

(13.4) 

2 i k ~ ,  + ku, + u,, = 0, z = 0. (13.5) 

We now drop u,, from (13.3) and (13.5) because u,, is presumably small compared 
to ku,, especially for k large (i.e. F small). Then (13.3)-(13.5) become 

Siku, + 2ku, + uuu + u,, = 0, 

&/an + (in, + n,) k u  = - n, exp [ - i k x  - kz] 

z < 0, (13.6) 

(13.7) 

2iu,+u, = 0, 2 = 0. (13.8) 

The result (13.6) is the desired ‘parabolic’ or Schrodinger-like equation for u, with x 
playing the role of time. It can be solved by starting at the bow with u = 0,  and 
marching toward the stern. In  (13.7) n, and n, are components of the unit normal to 
the hull. The term n,u, can be omitted from &/an because it is small, as was pointed 
out above. The reason why u,, is small is that the main x dependence of 4’ - x is 
presumably contained in the exponential factor. 

A further simplification of this problem is possible if u ,  is small compared to ku,. 
Then we subtract 2k times (13.8) from (13.6) evaluated on z = 0, and omit u,, to 
obtain 

2iku,-u,, = 0, 2 = 0. (13.9) 

We also use (13.8) to eliminate u, from (13.7) evaluated on z = 0,  i.e. on the water- 
line C. Then (13.7) becomes 

on B, 

(n, - 2in,) u, + nyuy + (in, + n,) ku = - n5eikx on C .  (13.10) 

Now (13.9) is a ‘parabolic’ equation for u(x ,  y, 0) on the surface z = 0 outside the 
water-line and it can again be solved by marching in x .  The boundary condition 
(13.10) on C can be simplified when n, and n, are small. 

Different ‘parabolic’ equation problems can be obtained by replacing x by the 
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double body potential $o in (13.2). Then the right sides of (13.7) and (13.8) become 
zero and - $JOZze-ikz respectively. Furthermore, the right sides of (13.9) and (13.10) 
become - 2k$,,e-ikX and zero respectively. 

The reason we have omitted the bottom boundary condition (1 1.3) is that 4’ - x 
has the exponentially small factor ekz,  so that condition is automatically fulfilled 
when kh is large. 

14. Conclusion and relation to other work 
Let us now summarize our results and relate them to those of other authors. In  

$9 2-10 we developed a ray theory to describe the waves produced by a slow ship, i.e. 
one for which F is small. In  5 11 we introduced the class of ,streamlined ships and 
derived the equations governing their waves, while in $ 12 we obtained the ray theory 
for them, valid for F small. Section 13 presents another method for obtaining the 
waves produced by a streamlined ship, which is also particularly useful for F small. 

Other recent work on wave making a t  low Froude number is based on Ogilvie’s 
(1968) study of wavemaking by a submerged two-dimensional body moving a t  small 
F .  In  particular Baba & Takekuma (1975), Baba (1976), Baba & Hara (1978), Newman 
(1976) and Maruo (1976) used his assumptions, applying them to a ship in three 
dimensions. I n  our notation these assumptions are 

@ = $+FZn$’, V$ = 0(1), V$‘ = O(F2n-2), n = 2.  (14.1) 

Comparison of (14.1) with (7.1) shows that $‘ corresponds to  our wave term, but that  
the two expressions for @ differ in two respects. First, in (7.1) we have n = Q while 
(14.1) has n = 2. Secondly we have a term F2$, in (7.1) which is missing from (14.1). 

Concerning the first point, Keller & Ahluwalia (1976) and others have shown that 
n = 8 is correct for a thin ship according to the Michell theory. Since (14.1) cannot 
yield that result, we must consider how the value n = 2 was arrived at. Newman 
(1976) notes that if n < 2 then 4’ would satisfy a homogeneous linear equation with 
linear boundary conditions, and therefore $’ would be zero. But the homogeneous 
linear equation is probably not valid in certain boundary layers near the hull, such 
as the nejghbourhoods of the bow and stern, and other singular points of $. Then 
4’ could be generated in those layers, and it could propagate outward according to 
the homogeneous equation mentioned above. If this i s  so, the argument that n cannot 
be less than two is invalid. 

Furthermore thevalue n = 2 and the equation for $‘ are obtainedby requiringterms 
linear in $‘ to balance terms involving $. Since $’ is a rapidly varying function of 
position according to (14. l),  it is not possible for any linear terms in $‘ to balance the 
slowly varying terms involving $. This casts doubt on the value n = 2 and on the 
equation for 9‘. 

This leads us to the second point mentioned above, the absence of the term F2$, 
from (14.1). That term is certainly necessary outside the wave region, where $’ is 
negligible, in order to satisfy the boundary conditions on the free surface. By con- 
tinuity it is likely to be present within the wave region also. I n  fact it is a slowly 
varying term and does just balance the terms in $ mentioned above. Since the 
term affects the variation of wave amplitude along a ray, theories which omit $, 
cannot yield the correct amplitude. 
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The equation obtained for #' involves advection of the waves by the flow with 
potential #, as in our theory. However Baba & Takekuma (1975) and Baba (1976) 
ultimately replace this by advection by the uniform flow with potential x. Thus the 
problem these authors really consider is an inhomogeneous form of the problem 
(1 1.  I)-( 11.5), which applies to a streamlined ship. The same applies to the work of 
Maruo (1977) and Noblesse (1978). 

The approximate solution for #' obtained by these authors can be obtained by re- 
placing the exact flow by # in an integral representation of the solution. The approxi- 
mate solution ultimately involves an integral along the water-line. We have evaluated 
that integral asymptotically for F small by the method of stationary phase. The result 
for #'(x, y, 0) contains terms which correspond exactly to the rays found in 5 12, from 
points on the rear part of the water-line. However the result also contains terms 
corresponding to rays from the front part of the water-line, which rays pass right 
through the ship. Thus the approximate solution is incorrect because it contains 
these unphysical ray contributions. 

The problem (1 1.1)-( 1 1.5) has been considered by Brard (1972) and Noblesse 
(1978), who call it the Kelvin-Neumann problem. However they did not derive it, 
nor consider the class of ships for which it is valid. 

Despite the shortcomings pointed out above, the numerical results obtained by the 
authors mentioned seem to be quite good. Evidently they have obtained good ap- 
proximations, although they may not be the low Froude number asymptotic form of 
the exact solution. 

Inui & Kajitani (1977) have also presented a ray theory, similar to that in Keller 
(1974), based on the work of Ursell (1960). 

I wish to thank D. S. Ahluwalia and S. I. Rubinow for their computational help. 
This research was supported by the Office of Naval Research under Contract no. 

N00014-76-C-0010 and the National Science Foundation under Grant no. MCS-78- 
02920. Part of this work was done while the author was in the Geophysical Fluid 
Dynamics Program a t  the Woods Hole Oceanographic Institution. 

Appendix A. Examples of the occurrence of waves 
We shall now present two examples illustrating the way in which waves arise. 

These examples have some similarity to the ship wave problem, but they are easier 
to analyse. The first involves the ordinary differential equation 

u%,+ k2U = g(x), 0 < X. (A 1) 

Here the constant k and the function g(x) are given with g ( x )  vanishing rapidly at 
infinity. We seek a solution u(x) satisfying the boundary condition 

UJO) = 0. (A 2) 

In  addition, we require that u satisfy the radiation condition 

lim Iu, - ikul = 0. 
X-+ Q, 

We seek the asymptotic form of the solution in the short wave limit, i.e. for k B 1. 
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To find this expansion we might try to write u in the form 

i m  I 

Substituting (A 4) into (A 1) and equating coefficients of corresponding powers of k2 
yields 

uo = g(x), ,241 = -u(Jxx = -gxx, u2 = -U1xx = gxxxx, * - .  * 

Thus 

This solution fails to satisfy the boundary condition (A 2 )  if g x ( 0 )  =t= 0. In  order to 
correct it, we must add to it a suitable solution of the homogeneous equation (A 1 ) .  

The general solution of the homogeneous equation is ae-ikx+ beikx. Now the radia- 
tion condition (A 3) applied to this solution yields 

lim I - i k a e - i k x + $ k b e - i k x - i k a e i k x - i k b e i k x I  = I -2 ika (  = 0. (A 7 )  
x - m  

Thus a = 0, so we add beikx to the right side of (A 6) to get 

Now (A 2) yields 0 = ikb + k-2gx(0) + . . . so b = - gx(0 ) / ik3  + . . . and (A 8) becomes 

We note that the wave term is of order k4,  which is intermediate between the orders 
of the first two terms in (A 6). 

In  this example the exact solution is easily found to be 

u ( x ,  k )  = lom - 2:k (exp [iklx - s'l] + exp [iklx + x'l]) g(x') dx'. (A 10) 

Asymptotic evaluation of this integral for k % 1 yields exactly (A 9) with the equals 
sign replaced by the sign of asymptotic equality. The wave term comes from the 
lower limit of integration via integration by parts, while the other terms come from 
the neighbourhood of x' = x. 

The second example concerns the partial differential equation 

A u + k 2 u  = g(x), x in D .  (A 11) 

Here D is a two-dimensional domain which extends to infinity, and which is bounded 
internally by a curve C .  On C we require that the normal derivative of u vanish, 

8,u = 0, x on C .  (A 12) 

A t  infinity we require u to satisfy the radiation condition 
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We proceed as above, writing u in the form (A 41, substituting into (A 11), and 
equating coefficients. This yields uo = g, u1 = - Ag, etc. Thus (A 4) becomes 

Again this solution fails to satisfy the boundary condition (A 12) if a,g =I= 0 on C. 
Therefore, we must add to it a suitable solution of the homogeneous equation. For k 
large, there are such solutions of the asymptotic form A(x)  exp (iks(x)). Adding this 
to the right side of (A 14) yields 

Now (A 12) becomes 

ik(8,s)Ae"s+(8,A)eiks+k-28,g+ ... = 0, x on C. 

In order for the first term to cancel the third term we must have 

8 9  
ik38,s' 

s = O  and A = - n  x on C 

We can use the values (A 16) of s and A on C to find s and A everywhere. First we 
substitute u N AeikS into the homogeneous form of (A 11)  and equate to zero the 
coefficients of the first two powers of k .  This yields 

(VS)2 = 1, 

2Vs .VA + AVS = 0. 

The rays associated with (A 17) are straight lines, and since s = 0 on C they are normal 
to C. If a denotes distance from C and n is normal to C a t  the point x, on C, we then 
have 

The corresponding solution of (A 18) is 

s = a a t  x = x,+an. (A 19) 

A = A (x,) ( p . - ) *  at x = x, + an. 

Here p is the radius of curvature of C at x,. The initial value A(xo) is given by (A 16), 
and in it 8,s = 1 according to (A 19). 

We finally use (A 19), (A 20) and (A 16) in (A 15) to obtain the desired result 

Appendix B. Amplitude variation along a ray for a thin ship 
In 54 it is shown that, for a thin ship, the exponent in (9.9) is the integral of 

-AS + ~(O'S) (0s)'. 

The phase, given by (4.6), is s = 2k:a and Ds = a,s = k,. Thus, Dzs = s,, = kls. 
Furthermore, by definition sy = k,  so syy = k2Y, and by (4.3) 

syY = k,, = (2e - kl) k,' klw. (B 1)  
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To find s, we differentiate (7.13), which is (Vs), = 0, with respect to z to get 
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s, s,, + s, s,, + s, s,, = 0. 

According to (8.11), s, = - ik!  on z = 0 so s,, = - 2ik,k,, and s,, = - 2ik,k,,. Thus, 
we get for s,, 

We now combine our results to get 

- AS + ~ ( O ' S )  (09)' = - k,, - (2k: - k,) k,lk,, + 2k1, + 2kz kT1 k,, + 2k1,k;. (B 3) 

We shall now express k,, in terms of k,, by using the fact that k,  is constant along 
a ray. Thus, k,  = k l x x  + k,, y = 0, which yields 

To find k,, we differentiate (4 .4 )  with respect to x to get 

1 = ( 2 - 1 2 k ~ ) k , , ~ ~ + ( 2 k , - 4 k : ) ~ ~ , ,  (B 5) 

(B 6) 0 = 2(kf -  k2,)-&. i ( 4 k : -  2k,) k,,cr+ 2(k:- kt)kcr. 

Upon eliminating CT, and solving for k,, we find 

ky- 1 
klx  = 2 k 3 3  - 2 k 3  cr * 

We now use (B 7) and (B 4 )  in (B 31, with k ,  given by (4 .3) ,  and the result is (4 .7) .  
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